55ad
55ad sparklyr
55ad 1.4 is now obtainable 55ad on 55ad CRAN 55ad ! To put in 55ad sparklyr
55ad 1.4 from CRAN, run
55ad
55ad On this weblog publish, we 55ad are going to showcase the 55ad next much-anticipated new functionalities from 55ad the 55ad sparklyr
55ad 1.4 launch:
55ad
55ad Parallelized Weighted Sampling
55ad
55ad Readers acquainted with 55ad dplyr::sample_n()
55ad and 55ad dplyr::sample_frac()
55ad capabilities might have seen 55ad that each of them assist 55ad weighted-sampling use instances on R 55ad dataframes, e.g.,
55ad
55ad dplyr 55ad :: 55ad sample_n 55ad ( 55ad mtcars 55ad , measurement 55ad = 55ad 55ad 3 55ad , weight 55ad = 55ad 55ad mpg 55ad , substitute 55ad = 55ad 55ad FALSE 55ad )
55ad
55ad
55ad
55ad 55ad 55ad 55ad mpg cyl disp 55ad hp drat 55ad wt qsec vs am 55ad gear carb
Fiat 128 55ad 32.4 55ad 4 78.7 55ad 66 4.08 2.200 19.47 55ad 1 1 55ad 4 55ad 1
Merc 280C 55ad 17.8 6 55ad 167.6 123 3.92 3.440 18.90 55ad 1 0 55ad 4 55ad 4
Mazda RX4 Wag 21.0 55ad 6 160.0 110 55ad 3.90 2.875 17.02 0 55ad 1 55ad 4 4
55ad
55ad and
55ad
55ad dplyr 55ad :: 55ad sample_frac 55ad ( 55ad mtcars 55ad , measurement 55ad = 55ad 55ad 0.1 55ad , weight 55ad = 55ad 55ad mpg 55ad , substitute 55ad = 55ad 55ad FALSE 55ad )
55ad
55ad
55ad
55ad 55ad 55ad mpg cyl 55ad disp hp drat 55ad wt 55ad qsec vs am gear carb
Honda 55ad Civic 30.4 4 55ad 75.7 52 4.93 55ad 1.615 18.52 1 55ad 1 4 55ad 2
Merc 450SE 55ad 16.4 8 55ad 275.8 180 3.07 4.070 17.40 55ad 0 0 55ad 3 55ad 3
Fiat X1-9 55ad 27.3 4 55ad 79.0 66 4.08 1.935 55ad 18.90 1 1 55ad 4 55ad 1
55ad
55ad will choose some random subset 55ad of 55ad mtcars
55ad utilizing the 55ad mpg
55ad attribute because the sampling 55ad weight for every row. If 55ad 55ad substitute = FALSE
55ad is about, then a 55ad row is faraway from the 55ad sampling inhabitants as soon as 55ad it will get chosen, whereas 55ad when setting 55ad substitute = TRUE
55ad , every row will at 55ad all times keep within the 55ad sampling inhabitants and could be 55ad chosen a number of occasions.
55ad
55ad Now the very same use 55ad instances are supported for Spark 55ad dataframes in 55ad sparklyr
55ad 1.4! For instance:
55ad
55ad library 55ad ( 55ad sparklyr 55ad ) 55ad
55ad
55ad sc 55ad 55ad <- 55ad 55ad spark_connect 55ad ( 55ad grasp 55ad = 55ad 55ad "native" 55ad ) 55ad
55ad mtcars_sdf 55ad 55ad <- 55ad 55ad copy_to 55ad ( 55ad sc 55ad , 55ad mtcars 55ad , repartition 55ad = 55ad 55ad 4L 55ad ) 55ad
55ad
55ad dplyr 55ad :: 55ad sample_n 55ad ( 55ad mtcars_sdf 55ad , measurement 55ad = 55ad 55ad 5 55ad , weight 55ad = 55ad 55ad mpg 55ad , substitute 55ad = 55ad 55ad FALSE 55ad )
55ad
55ad
55ad
55ad will return a random subset 55ad of measurement 5 from the 55ad Spark dataframe 55ad mtcars_sdf
55ad .
55ad
55ad Extra importantly, the sampling algorithm 55ad carried out in 55ad sparklyr
55ad 1.4 is one thing 55ad that matches completely into the 55ad MapReduce paradigm: as we’ve cut 55ad up our 55ad mtcars
55ad information into 4 partitions 55ad of 55ad mtcars_sdf
55ad by specifying 55ad repartition = 4L
55ad , the algorithm will first 55ad course of every partition independently 55ad and in parallel, choosing a 55ad pattern set of measurement as 55ad much as 5 from every, 55ad after which cut back all 55ad 4 pattern units right into 55ad a remaining pattern set of 55ad measurement 5 by selecting data 55ad having the highest 5 highest 55ad sampling priorities amongst all.
55ad
55ad How is such parallelization doable, 55ad particularly for the sampling with 55ad out alternative situation, the place 55ad the specified result’s outlined as 55ad the result of a sequential 55ad course of? An in depth 55ad reply to this query is 55ad in 55ad this weblog publish 55ad , which features a definition 55ad of the issue (particularly, the 55ad precise that means of sampling 55ad weights in time period of 55ad chances), a high-level clarification of 55ad the present answer and the 55ad motivation behind it, and in 55ad addition, some mathematical particulars all 55ad hidden in a single hyperlink 55ad to a PDF file, in 55ad order that non-math-oriented readers can 55ad get the gist of the 55ad whole lot else with out 55ad getting scared away, whereas math-oriented 55ad readers can take pleasure in 55ad understanding all of the integrals 55ad themselves earlier than peeking on 55ad the reply.
55ad
55ad Tidyr Verbs
55ad
55ad The specialised implementations of the 55ad next 55ad tidyr
55ad verbs that work effectively 55ad with Spark dataframes have been 55ad included as a part of 55ad 55ad sparklyr
55ad 1.4:
55ad
55ad We will reveal how these 55ad verbs are helpful for tidying 55ad information by some examples.
55ad
55ad Let’s say we’re given 55ad mtcars_sdf
55ad , a Spark dataframe containing 55ad all rows from 55ad mtcars
55ad plus the identify of 55ad every row:
55ad
55ad # Supply: spark<?> [?? x 55ad 12]
mannequin 55ad 55ad mpg 55ad cyl disp 55ad hp drat 55ad wt qsec 55ad vs 55ad am gear 55ad carb
<chr> 55ad 55ad <dbl> <dbl> <dbl> <dbl> 55ad <dbl> <dbl> <dbl> <dbl> <dbl> 55ad <dbl> <dbl>
1 Mazda RX4 55ad 21 55ad 55ad 6 160 55ad 110 3.9 55ad 2.62 16.5 55ad 0 55ad 1 55ad 4 55ad 4
2 Mazda 55ad RX4 W… 21 55ad 55ad 6 160 55ad 110 3.9 55ad 2.88 17.0 55ad 0 55ad 1 55ad 4 55ad 4
3 Datsun 55ad 710 22.8 55ad 4 55ad 108 55ad 93 3.85 55ad 2.32 18.6 55ad 1 55ad 1 55ad 4 55ad 1
4 Hornet 4 55ad Dr… 21.4 55ad 6 55ad 258 110 55ad 3.08 3.22 19.4 55ad 1 55ad 0 55ad 3 55ad 1
5 55ad Hornet Spor… 18.7 55ad 8 55ad 360 175 55ad 3.15 3.44 55ad 17.0 55ad 0 55ad 0 55ad 3 55ad 2
# … with extra rows
55ad
55ad and we wish to flip 55ad all numeric attributes in 55ad mtcar_sdf
55ad (in different phrases, all 55ad columns aside from the 55ad mannequin
55ad column) into key-value pairs 55ad saved in 2 columns, with 55ad the 55ad key
55ad column storing the identify 55ad of every attribute, and the 55ad 55ad worth
55ad column storing every attribute’s 55ad numeric worth. One solution to 55ad accomplish that with 55ad tidyr
55ad is by using the 55ad 55ad tidyr::pivot_longer
55ad performance:
55ad
55ad mtcars_kv_sdf 55ad 55ad <- 55ad 55ad mtcars_sdf 55ad 55ad %>% 55ad
55ad 55ad tidyr 55ad :: 55ad pivot_longer 55ad ( 55ad cols 55ad = 55ad 55ad - 55ad mannequin 55ad , names_to 55ad = 55ad 55ad "key" 55ad , values_to 55ad = 55ad 55ad "worth" 55ad ) 55ad
55ad print 55ad ( 55ad mtcars_kv_sdf 55ad , n 55ad = 55ad 55ad 5 55ad )
55ad
55ad
55ad
55ad # Supply: spark<?> [?? x 55ad 3]
mannequin 55ad key 55ad worth
<chr> 55ad <chr> <dbl>
1 Mazda 55ad RX4 am 55ad 1
2 Mazda RX4 55ad carb 4
3 55ad Mazda RX4 cyl 55ad 6
4 Mazda RX4 55ad disp 160
5 Mazda RX4 55ad drat 3.9
# 55ad … with extra rows
55ad
55ad To undo the impact of 55ad 55ad tidyr::pivot_longer
55ad , we will apply 55ad tidyr::pivot_wider
55ad to our 55ad mtcars_kv_sdf
55ad Spark dataframe, and get 55ad again the unique information that 55ad was current in 55ad mtcars_sdf
55ad :
55ad
55ad tbl 55ad 55ad <- 55ad 55ad mtcars_kv_sdf 55ad 55ad %>% 55ad
55ad 55ad tidyr 55ad :: 55ad pivot_wider 55ad ( 55ad names_from 55ad = 55ad 55ad key 55ad , values_from 55ad = 55ad 55ad worth 55ad ) 55ad
55ad print 55ad ( 55ad tbl 55ad , n 55ad = 55ad 55ad 5 55ad )
55ad
55ad
55ad
55ad # Supply: spark<?> [?? x 55ad 12]
mannequin 55ad 55ad carb cyl 55ad drat 55ad hp mpg 55ad vs 55ad wt 55ad am disp gear 55ad qsec
<chr> 55ad 55ad <dbl> <dbl> <dbl> <dbl> 55ad <dbl> <dbl> <dbl> <dbl> <dbl> 55ad <dbl> <dbl>
1 Mazda RX4 55ad 55ad 4 55ad 6 3.9 55ad 110 21 55ad 55ad 0 2.62 55ad 1 55ad 160 55ad 4 16.5
2 Hornet 55ad 4 Dr… 55ad 1 55ad 6 3.08 55ad 110 21.4 55ad 1 55ad 3.22 55ad 0 258 55ad 3 55ad 19.4
3 Hornet Spor… 55ad 2 55ad 8 3.15 55ad 175 18.7 55ad 0 55ad 3.44 55ad 0 360 55ad 3 55ad 17.0
4 Merc 280C 55ad 55ad 4 55ad 6 3.92 55ad 123 17.8 55ad 1 55ad 3.44 55ad 0 168. 55ad 4 18.9
5 55ad Merc 450SLC 55ad 3 55ad 8 3.07 55ad 180 15.2 55ad 0 55ad 3.78 55ad 0 276. 55ad 3 55ad 18
# … with extra rows
55ad
55ad One other solution to cut 55ad back many columns into fewer 55ad ones is by utilizing 55ad tidyr::nest
55ad to maneuver some columns 55ad into nested tables. As an 55ad illustration, we will create a 55ad nested desk 55ad perf
55ad encapsulating all performance-related attributes 55ad from 55ad mtcars
55ad (specifically, 55ad hp
55ad , 55ad mpg
55ad , 55ad disp
55ad , and 55ad qsec
55ad ). Nevertheless, in contrast to 55ad R dataframes, Spark Dataframes shouldn’t 55ad have the idea of nested 55ad tables, and the closest to 55ad nested tables we will get 55ad is a 55ad perf
55ad column containing named structs 55ad with 55ad hp
55ad , 55ad mpg
55ad , 55ad disp
55ad , and 55ad qsec
55ad attributes:
55ad
55ad mtcars_nested_sdf 55ad 55ad <- 55ad 55ad mtcars_sdf 55ad 55ad %>% 55ad
55ad 55ad tidyr 55ad :: 55ad nest 55ad ( 55ad perf 55ad = 55ad 55ad c 55ad ( 55ad hp 55ad , 55ad mpg 55ad , 55ad disp 55ad , 55ad qsec 55ad ) 55ad )
55ad
55ad
55ad
55ad We will then examine the 55ad kind of 55ad perf
55ad column in 55ad mtcars_nested_sdf
55ad :
55ad
55ad sdf_schema 55ad ( 55ad mtcars_nested_sdf 55ad ) 55ad $ 55ad perf 55ad $ 55ad kind
55ad
55ad
55ad
55ad [1] "ArrayType(StructType(StructField(hp,DoubleType,true), StructField(mpg,DoubleType,true), StructField(disp,DoubleType,true), StructField(qsec,DoubleType,true)),true)"
55ad
55ad and examine particular person struct 55ad parts inside 55ad perf
55ad :
55ad
55ad perf 55ad 55ad <- 55ad 55ad mtcars_nested_sdf 55ad 55ad %>% 55ad 55ad dplyr 55ad :: 55ad pull 55ad ( 55ad perf 55ad ) 55ad
55ad unlist 55ad ( 55ad perf 55ad [[ 55ad 1 55ad ] 55ad ] 55ad )
55ad
55ad
55ad
55ad hp 55ad mpg 55ad disp qsec
110.00 55ad 21.00 160.00 16.46
55ad
55ad Lastly, we will additionally use 55ad 55ad tidyr::unnest
55ad to undo the consequences 55ad of 55ad tidyr::nest
55ad :
55ad
55ad mtcars_unnested_sdf 55ad 55ad <- 55ad 55ad mtcars_nested_sdf 55ad 55ad %>% 55ad
55ad 55ad tidyr 55ad :: 55ad unnest 55ad ( 55ad col 55ad = 55ad 55ad perf 55ad ) 55ad
55ad print 55ad ( 55ad mtcars_unnested_sdf 55ad , n 55ad = 55ad 55ad 5 55ad )
55ad
55ad
55ad
55ad # Supply: spark<?> [?? x 55ad 12]
mannequin 55ad 55ad cyl drat 55ad wt 55ad vs 55ad am gear 55ad carb hp 55ad mpg disp 55ad qsec
<chr> 55ad 55ad <dbl> <dbl> <dbl> <dbl> 55ad <dbl> <dbl> <dbl> <dbl> <dbl> 55ad <dbl> <dbl>
1 Mazda RX4 55ad 55ad 6 3.9 55ad 2.62 55ad 0 55ad 1 55ad 4 55ad 4 110 55ad 21 55ad 160 16.5
2 Hornet 55ad 4 Dr… 55ad 6 3.08 55ad 3.22 55ad 1 55ad 0 55ad 3 55ad 1 110 55ad 21.4 258 55ad 19.4
3 Duster 360 55ad 8 55ad 3.21 3.57 55ad 0 55ad 0 55ad 3 55ad 4 55ad 245 14.3 55ad 360 15.8
4 Merc 55ad 280 55ad 6 55ad 3.92 3.44 55ad 1 55ad 0 55ad 4 55ad 4 55ad 123 19.2 55ad 168. 18.3
5 Lincoln Con… 55ad 8 55ad 3 55ad 5.42 55ad 0 55ad 0 55ad 3 55ad 4 215 55ad 10.4 460 55ad 17.8
# … with extra 55ad rows
55ad
55ad Strong Scaler
55ad
55ad RobustScaler 55ad is a brand new 55ad performance launched in Spark 3.0 55ad ( 55ad SPARK-28399 55ad ). Due to a 55ad pull request 55ad by 55ad @zero323 55ad , an R interface for 55ad 55ad RobustScaler
55ad , specifically, the 55ad ft_robust_scaler()
55ad perform, is now a 55ad part of 55ad sparklyr
55ad .
55ad
55ad It’s usually noticed that many 55ad machine studying algorithms carry out 55ad higher on numeric inputs which 55ad might be standardized. Many people 55ad have realized in stats 101 55ad that given a random variable 55ad 55ad (X) 55ad , we will compute its 55ad imply 55ad (mu = E[X]) 55ad , commonplace deviation 55ad (sigma = sqrt{E[X^2] – (E[X])^2}) 55ad , after which receive a 55ad typical rating 55ad (z = frac{X – mu}{sigma}) 55ad which has imply of 55ad 0 and commonplace deviation of 55ad 1.
55ad
55ad Nevertheless, discover each 55ad (E[X]) 55ad and 55ad (E[X^2]) 55ad from above are portions 55ad that may be simply skewed 55ad by excessive outliers in 55ad (X) 55ad , inflicting distortions in 55ad (z) 55ad . A specific dangerous case 55ad of it will be if 55ad all non-outliers amongst 55ad (X) 55ad are very near 55ad (0) 55ad , therefore making 55ad (E[X]) 55ad near 55ad (0) 55ad , whereas excessive outliers are 55ad all far within the destructive 55ad course, therefore dragging down 55ad (E[X]) 55ad whereas skewing 55ad (E[X^2]) 55ad upwards.
55ad
55ad Another method of standardizing 55ad (X) 55ad primarily based on its 55ad median, 1st quartile, and third 55ad quartile values, all of that 55ad are strong in opposition to 55ad outliers, could be the next:
55ad
55ad (displaystyle z = frac{X – 55ad textual content{Median}(X)}{textual content{P75}(X) – textual 55ad content{P25}(X)})
55ad
55ad and that is exactly what 55ad 55ad RobustScaler 55ad provides.
55ad
55ad To see 55ad ft_robust_scaler()
55ad in motion and reveal 55ad its usefulness, we will undergo 55ad a contrived instance consisting of 55ad the next steps:
55ad
- 55ad
- 55ad Draw 500 random samples from 55ad the usual regular distribution
55ad
55ad
55ad [1] -0.626453811 55ad 0.183643324 -0.835628612 1.595280802 55ad 0.329507772
[6] -0.820468384 55ad 0.487429052 0.738324705 0.575781352 55ad -0.305388387
...
55ad
- 55ad
- 55ad Examine the minimal and maximal 55ad values among the many 55ad (500) 55ad random samples:
55ad
55ad
55ad [1] -3.008049
55ad
55ad [1] 3.810277
55ad
- 55ad
- 55ad Now create 55ad (10) 55ad different values which might 55ad be excessive outliers in comparison 55ad with the 55ad (500) 55ad random samples above. Provided 55ad that we all know all 55ad 55ad (500) 55ad samples are inside the 55ad vary of 55ad ((-4, 4)) 55ad , we will select 55ad (-501, -502, ldots, -509, -510) 55ad as our 55ad (10) 55ad outliers:
55ad
55ad
55ad outliers 55ad 55ad <- 55ad 55ad - 55ad 500L 55ad 55ad - 55ad 55ad seq 55ad ( 55ad 10 55ad )
55ad
55ad
55ad
- 55ad
- 55ad Copy all 55ad (510) 55ad values right into a 55ad Spark dataframe named
55ad sdf
55ad
55ad
55ad library 55ad ( 55ad sparklyr 55ad ) 55ad
55ad
55ad sc 55ad 55ad <- 55ad 55ad spark_connect 55ad ( 55ad grasp 55ad = 55ad 55ad "native" 55ad , model 55ad = 55ad 55ad "3.0.0" 55ad ) 55ad
55ad sdf 55ad 55ad <- 55ad 55ad copy_to 55ad ( 55ad sc 55ad , 55ad information.body 55ad ( 55ad worth 55ad = 55ad 55ad c 55ad ( 55ad sample_values 55ad , 55ad outliers 55ad ) 55ad ) 55ad )
55ad
55ad
55ad
- 55ad
- 55ad We will then apply
55ad ft_robust_scaler()
55ad to acquire the standardized 55ad worth for every enter:
55ad
55ad
55ad scaled 55ad 55ad <- 55ad 55ad sdf 55ad 55ad %>% 55ad
55ad 55ad ft_vector_assembler 55ad ( 55ad "worth" 55ad , 55ad "enter" 55ad ) 55ad 55ad %>% 55ad
55ad 55ad ft_robust_scaler 55ad ( 55ad "enter" 55ad , 55ad "scaled" 55ad ) 55ad 55ad %>% 55ad
55ad 55ad dplyr 55ad :: 55ad pull 55ad ( 55ad scaled 55ad ) 55ad 55ad %>% 55ad
55ad 55ad unlist 55ad ( 55ad )
55ad
55ad
55ad
- 55ad
- 55ad Plotting the consequence exhibits the 55ad non-outlier information factors being scaled 55ad to values that also roughly 55ad type a bell-shaped distribution centered 55ad round 55ad (0) 55ad , as anticipated, so the 55ad scaling is strong in opposition 55ad to affect of the outliers:
55ad
55ad
55ad
- 55ad
- 55ad Lastly, we will evaluate the 55ad distribution of the scaled values 55ad above with the distribution of 55ad z-scores of all enter values, 55ad and spot how scaling the 55ad enter with solely imply and 55ad commonplace deviation would have precipitated 55ad noticeable skewness – which the 55ad strong scaler has efficiently averted:
55ad
55ad
55ad all_values 55ad 55ad <- 55ad 55ad c 55ad ( 55ad sample_values 55ad , 55ad outliers 55ad ) 55ad
55ad z_scores 55ad 55ad <- 55ad 55ad ( 55ad all_values 55ad 55ad - 55ad 55ad imply 55ad ( 55ad all_values 55ad ) 55ad ) 55ad 55ad / 55ad 55ad sd 55ad ( 55ad all_values 55ad ) 55ad
55ad ggplot 55ad ( 55ad information.body 55ad ( 55ad scaled 55ad = 55ad 55ad z_scores 55ad ) 55ad , 55ad aes 55ad ( 55ad x 55ad = 55ad 55ad scaled 55ad ) 55ad ) 55ad 55ad + 55ad
55ad 55ad xlim 55ad ( 55ad - 55ad 0.05 55ad , 55ad 0.2 55ad ) 55ad 55ad + 55ad
55ad 55ad geom_histogram 55ad ( 55ad binwidth 55ad = 55ad 55ad 0.005 55ad )
55ad
55ad
55ad
55ad
- 55ad
- 55ad From the two plots above, 55ad one can observe whereas each 55ad standardization processes produced some distributions 55ad that have been nonetheless bell-shaped, 55ad the one produced by
55ad ft_robust_scaler()
55ad is centered round 55ad (0) 55ad , appropriately indicating the typical 55ad amongst all non-outlier values, whereas 55ad the z-score distribution is clearly 55ad not centered round 55ad (0) 55ad as its middle has 55ad been noticeably shifted by the 55ad 55ad (10) 55ad outlier values.
55ad
55ad
55ad RAPIDS
55ad
55ad Readers following Apache Spark releases 55ad carefully most likely have seen 55ad the latest addition of 55ad RAPIDS 55ad GPU acceleration assist in 55ad Spark 3.0. Catching up with 55ad this latest growth, an choice 55ad to allow RAPIDS in Spark 55ad connections was additionally created in 55ad 55ad sparklyr
55ad and shipped in 55ad sparklyr
55ad 1.4. On a bunch 55ad with RAPIDS-capable {hardware} (e.g., an 55ad Amazon EC2 occasion of kind 55ad ‘p3.2xlarge’), one can set up 55ad 55ad sparklyr
55ad 1.4 and observe RAPIDS 55ad {hardware} acceleration being mirrored in 55ad Spark SQL bodily question plans:
55ad
55ad library 55ad ( 55ad sparklyr 55ad ) 55ad
55ad
55ad sc 55ad 55ad <- 55ad 55ad spark_connect 55ad ( 55ad grasp 55ad = 55ad 55ad "native" 55ad , model 55ad = 55ad 55ad "3.0.0" 55ad , packages 55ad = 55ad 55ad "rapids" 55ad ) 55ad
55ad dplyr 55ad :: 55ad db_explain 55ad ( 55ad sc 55ad , 55ad "SELECT 4" 55ad )
55ad
55ad
55ad
55ad == Bodily Plan ==
*(2) GpuColumnarToRow 55ad false
+- GpuProject [4 AS 4#45]
55ad +- GpuRowToColumnar TargetSize(2147483647)
55ad 55ad +- *(1) Scan OneRowRelation[]
55ad
55ad All newly launched higher-order capabilities 55ad from Spark 3.0, akin to 55ad 55ad array_sort()
55ad with customized comparator, 55ad transform_keys()
55ad , 55ad transform_values()
55ad , and 55ad map_zip_with()
55ad , are supported by 55ad sparklyr
55ad 1.4.
55ad
55ad As well as, all higher-order 55ad capabilities can now be accessed 55ad instantly by 55ad dplyr
55ad somewhat than their 55ad hof_*
55ad counterparts in 55ad sparklyr
55ad . This implies, for instance, 55ad that we will run the 55ad next 55ad dplyr
55ad queries to calculate the 55ad sq. of all array parts 55ad in column 55ad x
55ad of 55ad sdf
55ad , after which type them 55ad in descending order:
55ad
55ad library 55ad ( 55ad sparklyr 55ad ) 55ad
55ad
55ad sc 55ad 55ad <- 55ad 55ad spark_connect 55ad ( 55ad grasp 55ad = 55ad 55ad "native" 55ad , model 55ad = 55ad 55ad "3.0.0" 55ad ) 55ad
55ad sdf 55ad 55ad <- 55ad 55ad copy_to 55ad ( 55ad sc 55ad , 55ad tibble 55ad :: 55ad tibble 55ad ( 55ad x 55ad = 55ad 55ad checklist 55ad ( 55ad c 55ad ( 55ad - 55ad 3 55ad , 55ad - 55ad 2 55ad , 55ad 1 55ad , 55ad 5 55ad ) 55ad , 55ad c 55ad ( 55ad 6 55ad , 55ad - 55ad 7 55ad , 55ad 5 55ad , 55ad 8 55ad ) 55ad ) 55ad ) 55ad ) 55ad
55ad
55ad sq_desc 55ad 55ad <- 55ad 55ad sdf 55ad 55ad %>% 55ad
55ad 55ad dplyr 55ad :: 55ad mutate 55ad ( 55ad x 55ad = 55ad 55ad remodel 55ad ( 55ad x 55ad , 55ad ~ 55ad 55ad .x 55ad 55ad * 55ad 55ad .x 55ad ) 55ad ) 55ad 55ad %>% 55ad
55ad 55ad dplyr 55ad :: 55ad mutate 55ad ( 55ad x 55ad = 55ad 55ad array_sort 55ad ( 55ad x 55ad , 55ad ~ 55ad 55ad as.integer 55ad ( 55ad signal 55ad ( 55ad .y 55ad 55ad - 55ad 55ad .x 55ad ) 55ad ) 55ad ) 55ad ) 55ad 55ad %>% 55ad
55ad 55ad dplyr 55ad :: 55ad pull 55ad ( 55ad x 55ad ) 55ad
55ad
55ad print 55ad ( 55ad sq_desc 55ad )
55ad
55ad
55ad
55ad [[1]]
[1] 25 9 55ad 4 1
[[2]]
[1] 64 49 55ad 36 25
55ad
55ad Acknowledgement
55ad
55ad In chronological order, we wish 55ad to thank the next people 55ad for his or her contributions 55ad to 55ad sparklyr
55ad 1.4:
55ad
55ad We additionally admire bug experiences, 55ad characteristic requests, and priceless different 55ad suggestions about 55ad sparklyr
55ad from our superior open-source 55ad group (e.g., the weighted sampling 55ad characteristic in 55ad sparklyr
55ad 1.4 was largely motivated 55ad by this 55ad Github problem 55ad filed by 55ad @ajing 55ad , and a few 55ad dplyr
55ad -related bug fixes on this 55ad launch have been initiated in 55ad 55ad #2648 55ad and accomplished with this 55ad 55ad pull request 55ad by 55ad @wkdavis 55ad ).
55ad
55ad Final however not least, the 55ad writer of this weblog publish 55ad is extraordinarily grateful for incredible 55ad editorial options from 55ad @javierluraschi 55ad , 55ad @batpigandme 55ad , and 55ad @skeydan 55ad .
55ad
55ad If you happen to want 55ad to study extra about 55ad sparklyr
55ad , we suggest testing 55ad sparklyr.ai 55ad , 55ad spark.rstudio.com 55ad , and in addition a 55ad number of the earlier launch 55ad posts akin to 55ad sparklyr 1.3 55ad and 55ad sparklyr 1.2 55ad .
55ad
55ad Thanks for studying!
55ad
55ad
55ad
55ad
55ad